
Supporting Sustainable Process Documentation

Markus Gärtner1(B), Uli Hahn2, and Sibylle Hermann3

1 Institute for Natural Language Processing,
University of Stuttgart, Stuttgart, Germany
markus.gaertner@ims.uni-stuttgart.de

2 Communication and Information Centre, Ulm University, Ulm, Germany
uli.hahn@uni-ulm.de

3 University Library, University of Stuttgart, Stuttgart, Germany
sibylle.hermann@ub.uni-stuttgart.de

Abstract. In this paper we introduce a software design to greatly sim-
plify the elicitation and management of process metadata for researchers.
Detailed documentation of a research process not only aids in achieving
reproducibility, but also increases usefulness of the documented work for
others as a cornerstone of good scientific practice. However, in reality,
time pressure together with the lack of simple documentation methods
makes documenting workflows an arduous and often neglected task. Our
method for a clean process documentation combines benefits of version
control with integration into existing institutional infrastructure and a
novel schema for describing process metadata.

1 Introduction

Lately the term “reproducibility crisis” has frequently been brought up in
the context of criticism on research quality in general. However, the Ger-
man Research Foundation (DFG) correctly emphasizes1 that reproducibility2

is only one of many quality measures for good research. Furthermore, it asks
for increased attention to questions raised in the close-by area of research data
management (RDM). The topic is also in line with recent survey results3 which
stress the insecurity of many researchers when it comes to RDM and the related
issues of research data sustainability.

Following the idea of Claerbout and Karrenbach (1992) that articles are only
advertisement for the actual scholarship, due diligence should also be exercised
in compiling and publishing documentations of research processes alongside the
results. This helps especially for tasks that naturally can be reproducible if doc-
umented thoroughly, such as computations with strictly deterministic outcomes.
1 Press release by the German Research Foundation (DFG) on “Replicability of
Research Results”, April 25th 2017.

2 We do not intend to delve into the deeper semantic discussion of “reproducibility”
vs. “replicability” and treat both terms as synonyms here.

3 By project bwFDCommunities http://bwfdm.scc.kit.edu or Humboldt-University
Berlin http://nbn-resolving.org/urn:nbn:de:kobv:11-100213001.

c© The Author(s) 2018
G. Rehm and T. Declerck (Eds.): GSCL 2017, LNAI 10713, pp. 284–291, 2018.
https://doi.org/10.1007/978-3-319-73706-5_24

http://bwfdm.scc.kit.edu
http://nbn-resolving.org/urn:nbn:de:kobv:11-100213001


Supporting Sustainable Process Documentation 285

But even if a process conceptually defies reproduction (e.g., results of strictly
qualitative analysis) a good documentation can increase usability.

Today’s research practice however is dominated by competitive and time
pressures. Together with the focus on producing publishable end results com-
bined with lack of gratification for detailed process documentation this leads to
a serious neglect of documentation efforts. Our project aims at filling that gap
with the software tool described in this paper. The goal is to support scientists
in creating process documentation already during the workflow with minimal
effort. This concept is being exemplified with use cases from researchers in com-
putational linguistics and digital humanities where a plethora of multifaceted
workflows exist.

We contextualize our work in Sect. 2 and introduce our schema for process
metadata in Sect. 3. Section 4 provides an overview of our software design and
shows possibilities of interconnections to related infrastructure. In Sect. 5 we
summarize the findings and hint at possibilities of how this concept can be
integrated within a broader context.

2 Related Work

In the context of documenting a research process, systems for two slightly distinct
fields are relevant: Workflow management and workflow tracking.

A Workflow management system (WMS) is software that helps in setting
up workflows as collections of interdependent (executable) steps. The list of
(commercial) WMSs for general-purpose or enterprise use is extensive, but their
usability for specialized research workflows is limited. For certain research fields
dedicated WMS instances have emerged. GenePattern4 (Reich et al. 2006) for
instance allows the creation, management and execution of analysis pipelines for
genome research.

The task of workflow tracking is more reactive and involves documenting
steps during or after their execution. Tools similar to YesWorkflow (McPhillips
et al. 2015) offer the ability to annotate data flows and operations on the code
level and to receive a graph visualization of the implicit workflow. They are
however primarily aimed at script-heavy workflows. More related to software
development, version control systems like Git5, Apache Subversion (SVN)6 or
others provide sufficient functionality for tracking and documenting complex
collaborative development workflows.

In stark contrast to the elaborate solutions listed so far, in practice it is
not uncommon for researchers to document their workflow simply by means
of a local Word or Excel file. Reasons for this given in surveys include the
complexity of many workflow management or tracking systems, the barrier of
entry for technically unskilled users and available systems essentially being not
specialized enough for a given workflow. In addition many solutions focus on
4 http://www.genepattern.org.
5 https://git-scm.com.
6 https://subversion.apache.org.

http://www.genepattern.org
https://git-scm.com
https://subversion.apache.org


286 M. Gärtner et al.

creation and maintenance of executable analysis or processing pipelines, making
them unsuited for workflows that involve manual steps, such as annotation or
curation.

By splitting process documentation into metadata for resources (objects)
used in it and the actions performed, the need to interface with existing metadata
infrastructure becomes evident. Initiatives like CLARIN (Hinrichs and Krauwer
2014) already provide wide coverage of metadata repositories for communities
in computational linguistics and digital humanities. While having rich object
metadata available is by no means a sufficient replacement of proper process
documentation, it does provide a valuable foundation to build on.

3 Process Metadata

We follow the more common convention of modeling workflows as directed acyclic
graphs (DAG) (Deelman et al. 2009) where each node represents a single step. As
pointed out in Sect. 2, there are already established initiatives and systems for
the provision or archiving of object metadata. That is metadata associated with
an individual resource, usually created and archived after reaching a mature
state in the resource’s development or creation lifecycle. Rich in detail, such
metadata records are also typically following schemas specific to the field of
research they originated from. For example in the context of CLARIN the Com-
ponent MetaData Infrastructure (CMDI)7 is used for entries in the CLARIN
Virtual Language Observatory (VLO)8. Due to such infrastructures also pro-
viding means for persistent identification of individual records9, the metadata
schema in this section is focused solely on the process itself. To this end our
schema defines the following fields for a single workflow step (with the field’s
multiplicity in round brackets if it is optional):

Title. User-defined short label for the workflow step. This is meant to be very
compact and can also be reduced to simply state the type of the task performed,
such as “Annotation”.

Description. This more detailed description of the workflow step is meant to
be a human readable explanation that should contain enough information for
another researcher to understand what was done. It is also the place where
basically arbitrary additional notes can be placed. It will help to find and keep
track of decisions or expectations and to raise the reusability for others.

Input (0..n). Resources used to perform the action. This includes an extremely
diverse spectrum of resources which are in turn highly task-specific. They can
range from local resources of arbitrary type (corpora, model files, configuration
files, pictures, audio, etc.) to online resources (e.g., public annotation guidelines)
to “pointers” at real objects such as books that don’t exist in digitized form.
7 http://www.clarin.eu/cmdi.
8 https://vlo.clarin.eu.
9 E.g., metadata for the TIGER Corpus: http://hdl.handle.net/11022/1007-0000-
0000-8E2D-F.

http://www.clarin.eu/cmdi
https://vlo.clarin.eu
http://hdl.handle.net/11022/1007-0000-0000-8E2D-F
http://hdl.handle.net/11022/1007-0000-0000-8E2D-F


Supporting Sustainable Process Documentation 287

Output (0..n). Resources generated by the action. Unlike input resources, these
usually represent exclusively local files, since the workflow is assumed to take
place on a local system.

Tool (0..1). The executable resource used for processing. This is either a local
program or a web-service and in both cases command line parameters or settings
can and should be recorded.

Person (0..n). Human subjects involved in the workflow step. Similar to Input,
the content of this field is quite diverse, including, but not limited to, annotators,
curators or experiment participants.

Custom properties (0..n). Arbitrary classic textual key-value metadata
entries that can be added, primarily to provide machine readable storage options
for metadata created by future plugins or if the user wishes to include structured
information beyond the free-text in the Description.

Complex fields (Input, Output, Person, Tool) get assigned one or more typed
identifiers. These identifiers take the form of <type, id> where id is the actual
identification string such as a name or web address and type defines how that id

is to be interpreted. These identifiers can also be used to link resources or persons
to public repositories or databases (e.g., VLO-Handles for CLARIN resources or
an ORCID10 for registered researchers).

The standard serialization format for the process metadata is JSON11. Our
tool uses it to store process metadata locally as described in Sect. 4.1 and for
exporting (parts of a) workflow documentation. Since JSON is a very simple and
also widely used format, it is easily possible to convert the output, or process it
with other systems.

4 Architecture

In this section we provide an overview of our architecture, especially the design of
the client software which is being developed in our project. The core component
is a Java application which bundles the user interactions required for tracking
and documenting the workflow. Behind the scenes this client uses a local Git
repository for tracking changes to file resources in workspace folders designated
by the user. The client is also meant to provide a wide range of additional
functionality, among others the ability to interact with existing data and/or
metadata repositories to store or retrieve resources or metadata. We describe
some of these features in the following Sects. 4.1 through 4.3.

4.1 Git and Process Documentation

The Git system allows version control of a local folder’s content, that is, it tracks
changes to files inside this folder so that individual states or “versions” can be
recorded and referenced.
10 https://orcid.org.
11 http://www.json.org.

https://orcid.org
http://www.json.org


288 M. Gärtner et al.

Storage of Process Metadata. The recording of a workspace’s state is trig-
gered by so called Git “commit” operations. In our workflow model every work-
flow step corresponds to a single Git commit. Each commit is also accompanied
by its respective “commit message”. Those messages commonly are human-
readable descriptions made by the user to explain the nature or reason of
performed modifications. However, our application design completely hides the
direct Git interface from the end users as to not overwhelm them with unneeded
complexity or functions. This way we can use commit messages to store process
metadata (cf. Sect. 3) and thereby directly associate physical changes to the data
with matching (formal) documentation.

Unfortunately Git can only automatically detect those local files that rep-
resent the “output” of a workflow step (since those have been modified or are
new). This means that the completeness of a resulting workflow documentation
ultimately still relies on the user. We plan assistive functions in the client that
try to suggest involved input resources when recording a workflow step to reduce
the effort required by the user. Their implementation is at this point however
still an open issue and the correctness and usability will have to be evaluated
together with the user community at a later stage.

Increasing Documentation Consistency. Manually documenting a workflow
is prone to common mistakes, such as forgetting to include changes to a resource
in the documentation or introducing inconsistencies in the descriptions. As stated
above, Git cannot guarantee completeness when recording all the input resources
used in a workflow step. It does on the other hand track reliably all the changes
made to files that are under version control. As a result it makes it impossible to
miss modification on tracked files and reminds the user to document all of them.
Having the entire workflow history available when recording a new workflow
step, also enables the client to detect inconsistent documentation, for instance
when the user tries to assign a different description to a resource which has been
previously used in another step.

Trying Alternatives. Only very few research workflows ever result in a strictly
linear concatenation of performed steps. Usually there are situations during a
workflow where an assumption was found to be untrue or an evaluation yielded
unsatisfactory results. In those cases the researcher typically “goes back” and
pursues an alternative approach by performing a different workflow step on the
same previous workspace state (e.g., testing new settings for an analysis tool or
training systems on different data, etc.). A workflow graph displays this behavior
as branches originating from the same node to concurrent new child nodes. Git
offers a similarly named functionality where a workflow can split into indepen-
dent branches and the folder under version control can be changed to reflect any
previously recorded state at will.

Backup and Cooperation. Git represents a decentralized or distributed ver-
sion control system. While every local repository itself allows full version con-
trol, one can also import or export changes from and to a remote repository.
In the context of our client this allows the “local workflow” to be connected to



Supporting Sustainable Process Documentation 289

a remote Git repository (e.g., an institute or university wide GitLab12 instal-
lation). Benefits of this include for example an additional layer of backup for
valuable resources used in the workflow or the ability to cooperatively work on
the same “shared” workspace from different locations.

While building upon the Git system offers many advantages, there are also
limitations and issues to address when using it for workflow documentation,
especially in very resource-heavy computational projects. Since Git basically
has to duplicate every file that is kept under version control, this leads to a
very high storage consumption when used for already big resources, such as web
corpora. As a solution the user can exclude files from being tracked, so that they
won’t affect performance.

4.2 Client Customizability

With the process metadata outlined in Sect. 3 we can model a very broad spec-
trum of diverse workflows and therefore make the client usable for researchers
in many fields. Different research fields and also universities or institutes often
already have individual infrastructures for archiving or management of resources
and metadata in place. To not create redundancies the following principles are
taken into account for the client design:

Independence. In the most basic version our client requires absolutely no exter-
nal infrastructure or third-party software to work with, besides the libraries it
is shipped with. It will provide the full functionality of workflow documentation
and also enable the user to create and store object metadata locally in a sim-
ple (customizable) schema following Dublin Core (Powell et al. 2005). In this
configuration the user can work completely network-independent and also is not
reliant on other infrastructure, making the client very light-weight.

Extensibility. To be able to incorporate the client into existing institutional
infrastructure we use a plugin-architecture. This allows for example customized
implementations for interfacing with additional repositories to be added.

4.3 External Repositories

In addition to workflow documentation in private domains (Treloar et al. 2007),
the client also gives the possibility to collaborate in the shared (but not publicly
open) domain, and to publish partial or final results in the public domain. To
meet both requirements there are two systems with their respective interfaces
that will be supported: For publishing within the shared domain, ResourceS-
pace13 is being used. The repository software DSpace14 (Smith 2002) is used

12 https://gitlab.com.
13 https://www.resourcespace.com.
14 http://www.dspace.org.

https://gitlab.com
https://www.resourcespace.com
http://www.dspace.org


290 M. Gärtner et al.

for publishing data with a permanent identifier (DOI) in the public domain.
DSpace is a popular software for institutional publication repositories. We plan
to interface with ResourceSpace for the shared domain, as it offers a better rights
management as well as the possibility to share data within defined communities.

5 Outlook

In this paper we introduced our design of a software supporting process docu-
mentation. We have shown the essential benefits of using version control software
such as Git as a foundation for workflow tracking with a main focus on com-
putational linguistics and digital humanities. In addition, we propose a simple
yet very expressive metadata schema to describe individual steps in a research
workflow. Keeping those principles separated – namely the distinction between
metadata describing objects used in a workflow and the actions performed –
enables the software to be very flexible. As a result it will be fairly easy to adopt
the tool to specific needs (of other disciplines) and also to integrate it into the
diverse landscape of existing infrastructures.

Acknowledgments. This work was funded by the Ministry for Science, Research and
the Arts in Baden-Württemberg (MWK) via the E-Science project “RePlay-DH”.

References

Claerbout, J., Karrenbach, M.: Electronic documents give reproducible research a new
meaning. In: Proceedings of 62nd Annual International Meeting of the Society of
Exploration Geophysics, pp. 601–604 (1992)

Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: an overview
of workflow system features and capabilities. Future Gener. Comput. Syst. 25(5),
528–540 (2009). https://doi.org/10.1016/j.future.2008.06.012. ISSN 0167–739X

Hinrichs, E., Krauwer, S.: The CLARIN research infrastructure: resources and tools
for e-humanities scholars. In: Proceedings of the 9th International Conference on
Language Resources and Evaluation, LREC 2014, pp. 1525–1531, May 2014. URL
http://dspace.library.uu.nl/handle/1874/307981

McPhillips, T.M., Song, T., Kolisnik, T., Aulenbach, S., Belhajjame, K., Bocinsky,
K., Cao, Y., Chirigati, F., Dey, S.C., Freire, J., Huntzinger, D.N., Jones, C., Koop,
D., Missier, P., Schildhauer, M., Schwalm, C.R., Wei, Y., Cheney, J., Bieda, M.,
Ludäscher, B.: YesWorkflow: a user-oriented, language-independent tool for recov-
ering workflow information from scripts. CoRR, abs/1502.02403, 2015. URL http://
arxiv.org/abs/1502.02403

Powell, A., Nilsson, M., Naeve, A., Johnston, P.: Dublin core metadata initiative -
abstract model (2005). White Paper, http://dublincore.org/documents/abstract-
model

Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Mesirov, J.P.: GenePattern
2.0. Nat. Genet. 38(5), 500–501 (2006). https://doi.org/10.1038/ng0506-500. ISSN
1061–4036

https://doi.org/10.1016/j.future.2008.06.012
http://dspace.library.uu.nl/handle/1874/307981
http://arxiv.org/abs/1502.02403
http://arxiv.org/abs/1502.02403
http://dublincore.org/documents/abstract-model
http://dublincore.org/documents/abstract-model
https://doi.org/10.1038/ng0506-500


Supporting Sustainable Process Documentation 291

Smith, M.: Dspace: an institutional repository from the mit libraries and hewlett
packard laboratories. In: Agosti, M., Thanos, C. (eds.) ECDL 2002. LNCS, vol.
2458, pp. 543–549. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45747-X 40

Treloar, A., Groenewegen, D., Harboe-Ree, C.: The data curation continuum: managing
data objects in institutional repositories, vol. 13, no. 9/10. D-Lib Magazine, Septem-
ber/October 2007. https://doi.org/10.1045/september2007-treloar. ISSN 1082–9873

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-45747-X_40
https://doi.org/10.1007/3-540-45747-X_40
https://doi.org/10.1045/september2007-treloar
http://creativecommons.org/licenses/by/4.0/

	Supporting Sustainable Process Documentation
	1 Introduction
	2 Related Work
	3 Process Metadata
	4 Architecture
	4.1 Git and Process Documentation
	4.2 Client Customizability
	4.3 External Repositories

	5 Outlook
	References


